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Abstract:

The curve number method is a simple one parameter (the curve number) rainfall runoff model. While its theoretical
underpinning has been questioned it remains a powerful hydrological tool in the absence of detailed data and is therefore used
extensively in hydrological models. This study aims to characterize the variation in maximum retention values (S), which
underlie curve numbers, for a range of agricultural treatments across a large spatial area in New South Wales (NSW), Australia.
The data used for the analysis spans several decades of rainfall runoff observations. A range of different derivation methods
result in variation in mean and variance of S. In particular, methods that emphasize the larger storms result in greater S and
thus lower runoff. For larger spatial scales, emphasis on larger storms gives more reliable estimates of S. Systematic variation
in S arises from variations in treatment, pre-runoff soil moisture, rainfall depth, and variations in cover. On the basis of the
analysis, a table of curve number values for different land uses found in NSW is presented.

The resulting distributions of S and curve numbers provide guidance for rainfall runoff modelling studies in the agricultural
important areas of NSW. Copyright  2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Curve numbers (CN ) have been widely used in hydro-
logical modelling to predict the partitioning of rainfall
into runoff and infiltration. In this approach, runoff is a
direct function of daily rainfall, and the different runoff
response curves are specified by a single parameter (CN )
ranging from 0 (no runoff) to 100. The concept is neither
new (Ponce and Hawkins, 1996) nor without criticism
(Garen and Moore, 2005; Michel et al., 2005; Shaw and
Walter, 2009). If detailed data are available, process-
based models can give much more accurate answers
than CN-based models (Goodrich et al., 1994; Garen and
Moore, 2005). However, in the absence of detailed spa-
tial and temporal information such as in many locations
in Australia, a bulk parameter provides a useful estimate
of temporal and areal average runoff because important
sources of variability, such as spatial and temporal rain-
fall distribution, average out. As a result, Smith (1997)
concluded that if only rainfall depth is available, there is
currently no better method available for practical estima-
tion of runoff than the curve number procedure.

Curve numbers (CN ) are traditionally based on com-
binations of land use and soil type. The CN method
recognizes four soil classes, primarily separated on profile
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hydraulic conductivities (Hawkins et al., 2009). Runoff
variation within the soil hydrologic classes is, therefore,
governed by the overlying land use, presumably through
the influence on the infiltration loss (Ponce and Hawkins,
1996). Even though the CN methodology makes no direct
assertion about the mechanisms involved in generating
runoff, several authors have suggested interpretations of
the physical process underlying the CN (Boughton, 1989;
Steenhuis et al. 1995; Ponce and Hawkins 1996; Yu,
1998; Mishra and Singh 1999; Mishra et al. 2005). Sim-
ply put, the CN is a scaled version of the potential
maximum retention (S). Runoff is generated after rainfall
(P) exceeds the initial abstraction (Ia) that accounts for
infiltration, interception, and surface storage in puddles
and hollows. Runoff increases in time up to a maximum
of P � S.

As the dependence of the hydrologic response on soil
and land use is well documented (Michel et al., 2005), the
simplicity of the model makes the CN method extremely
powerful for large scale GIS-based modelling (Beven,
2001), particularly in the absence of detailed spatial data.
It is therefore not surprising that many point-scale and
catchment-scale hydrological models incorporate some
version of the curve number equation (i.e. Foerster and
Milne-Holme, 1995; Abbs and Littleboy, 1998; Arnold
et al., 2000).

In Australia, Owens et al. (2003) reported that CN
ranged from 97 under bare conditions to 57 under
full cover on a hard setting Sodosol (Isbell, 1996)
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with low surface infiltration rates under bare conditions.
For a heavy clay soil with varying levels of cover
(25–90%), Foerster and Milne-Holme (1995) similarly
found optimized CN ranging between 56 and 96 for
runoff plots in Gunnedah under wheat for different tillage
systems. These CN represented a much wider range than
values for similar land use in the NEH630 tables (NRCS,
2004a). In contrast, in the same general area and using a
catchment scale model and calibration on heavier (C & D)
soils, values very similar to NEH630 tables were found
(Sun and Cornish, 2005). Finally, for a group of 105
catchments with varying sizes in Queensland, estimated
CN were highly variable and dependent on the method
of determination (Titmarsh et al., 1995). These results
suggest a large variation in CN values in agriculturally
important areas of Australia, with, apart from the cover
relationship highlighted by Owens et al. (2003), little
indication of what determines this variation.

In general, variation in CN between events can result
from variations in storm characteristics and surface
conditions. Much of the variability in CN has been
attributed to antecedent runoff content (ARC) such that
soils that are wetter have a higher curve number, creating
more runoff for a given amount of precipitation, than
soils that are drier (Huang et al., 2007; Shaw and Walter,
2009). The ARC is generally divided into three classes:
II for average conditions, I for dry conditions, and III for
wetter conditions, each relating to different CN values
within each land use class (NRCS, 2004b).

There has been some suggestion that the CN values
in the NEH630 tables apply to 5% slopes and that the
parameters need to be positively adjusted for steeper
slopes (Neitsch et al., 2002; Huang et al., 2006). How-
ever, this relationship was never thoroughly tested and
was based on some small watershed data in Texas (pers.
comm. Dr. J. Williams, March 2008). As Hawkins et al.
(2009) points out, there is also some literature that sug-
gests negative slope adjustments for steeper slopes, which
could be related to the erosion of potential surface seals
before they can form.

Because of the local variation, calibration of CN is
often used to match observed runoff to predicted runoff in
hydrological models (Kim et al., 2010). While calibration
is a useful tool for optimising large-scale hydrological
models, a better indication of the range of possible CN
values strengthens the calibration process.

Several methods have been suggested to estimate
CN (Titmarsh et al., 1995; Ponce and Hawkins, 1996;
McCuen, 2002; Feyereisen et al., 2008; Hawkins et al.,
2009); most are based on graphical and least squares
regression equations of observed rainfall runoff pairs, or
their logarithmic transforms. As the minimum size of the
storms included in the analysis is raised, lower CN result,
because for small precipitation events, runoff only occurs
for wet antecedent conditions and high-intensity storm
conditions (Hawkins et al., 2009). Thus, CN based on
the annual flood values will be lower than those based
on analysis of more events per year; and CN derived from
only rainfall events larger than some minimum size, such

as 25 mm, will usually be lower than those derived using
all available rainfall runoff pairs (see also Titmarsh et al.
1995).

The aims of this paper are to report the observed
variation in the potential maximum retention values (S)
underlying CN for a range of agricultural land uses in
NSW, Australia, and to identify possible reasons for
the variation. We concentrate on deriving S values as
these have a physical interpretation in terms of maximum
depth of water storage in the soil. The S values in this
study were derived from a substantial historic database
of rainfall-runoff data.

The CN method

The CN method is based on a water balance and two
empirical hypotheses. The first states that the ratio of
direct runoff (Q) to potential maximum runoff is equal
to the ratio of infiltrated depth to potential maximum
retention, S (both in length units). The second hypothesis
is that the initial abstraction is some fraction of the
potential maximum retention. Expressed mathematically,
the water balance is

P D Ia C F C Q �1�

and the two hypotheses are

Q

P � Ia
D F

S
�2�

Ia D �S �3�

Where P is the rainfall, Ia is the initial abstraction, F
is the cumulative infiltration depth excluding Ia, Q is the
direct runoff, S is the potential maximum retention and
� is the initial abstraction ratio, which is suggested to be
equal to 0Ð2 (NRCS 2004a).

There is some debate about the value of � and whether
this should be a calibrated parameter (Mishra et al.,
2005; Descheemaeker et al., 2008; Hawkins et al. 2009).
A recent re-analysis of the available data suggested
that an initial abstraction equal to 0Ð05 ð S would fit
the data better (Woodward and Lomas, 2004; Hawkins
et al., 2009). However, runoff predictions for most events
would not be greatly altered by this change (Schnei-
der and McCuen, 2005), and this is particularly true for
higher rainfalls (Mishra and Singh, 2003). For this study,
the standard value of 0Ð2 for � was assumed. Combin-
ing Equations (1), (2), and (3), Q can be expressed as
follows:

Q D �P � �S�2

�P � �S� C S
for P > �S �4a�

Q D 0 for P � �S �4b�

The relationship between S (in mm) and the CN is
defined as

S D 25 400

CN
� 254 or CN D 25 400

254 C S
�5�
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The CN ranges from 0 to 100 and is a transformation
of S, which varies between 0 � S � 1. A value of S can
be calculated from P and Q if � D 0Ð2 (Hawkins 1993):

S D 5
[
P C 2Q � (

4Q2 C 5PQ
)0Ð5]

�6�

The calculation of CN from the S values is simple
using (5).

METHODS

Study area

Daily rainfall and runoff from 6 New South Wales
Soil Conservation Service research stations (Cowra,
Gunnedah, Inverell, Scone, Wagga, and Wellington,
Figure 1) were used for this study (Edwards, 1987) and
this includes the data used earlier by Foerster and Milne
Holme (1995). Average annual rainfall was fairly consis-
tent across the 6 locations ranging from around 600 to
800 mm/year (Table I) and annual potential evapotran-
spiration ranged between 1300 and 1800 mm/year.

Over varying periods (from 6 to 33 years between
1943 and 1985) runoff plots were set up by the New
South Wales Soil Conservation Service to develop the
SOILOSS erosion prediction program (Edwards, 1987).
At each location, several cropping and tillage treatments
(Table I) were applied to the runoff plots, and at least
three replications were carried out for every treatment.
Briefly, cultivation treatments included several different
wheat, sorghum, and maize rotations with different lev-
els of tillage and fallow periods; Perennial pasture tri-
als included a range of different pasture species, such
as lucerne and grazing oats which were intermittently
grazed or mowed; and finally grazing pressure trials
which specifically studied the different levels of graz-
ing pressure on presumably native pastures. The separa-
tion between the perennial pasture trials and the grazing

Figure 1. Map of NSW (Australia) with the locations of the research
stations used in this study relative to the NSW capital Sydney

pressure trials is not very well defined in the original doc-
umentation (Edwards, 1987). The grazing pressure trials
were kept in this study as a separate group to highlight
the effect of grazing pressure. The reader is referred to
Edwards (1987) for the full description and time peri-
ods of each of the treatments. For this study, we grouped
the trials into the three main groups: cultivated, perennial
pasture and grazing trials. The soil erosion results from
these locations have been summarized earlier (Edwards,
1987), but the rainfall-runoff results have not been stud-
ied in detail.

In general, the plots in the study were 41Ð5 ð 2Ð4 m,
or approximately 0Ð01 ha. In comparison, the watersheds
on which the NEH630 tables are based were less than 1
square mile (256 ha) in size (NRCS, 2004a). This would
still be considerably larger than the plots on which the
runoff data in this study was derived.

Soils

For this study, we estimated the approximate saturated
hydraulic conductivities (Ks) for the soils based on
reported textures (Edwards, 1987) using the pedotransfer
program Neurotheta (Minasny and McBratney, 2002).
The definitions used to group soil hydraulic classes
have varied since they were first introduced in 1955
(Hawkins et al., 2009). However, using the present
criteria (Hawkins et al., 2009) and based on hydraulic
conductivities of the top 0Ð5 m, soils at Cowra and Wagga
Wagga are classified as C soils, while the others are D
soils (Table I). We chose to classify the soils in Inverell as
C soils, despite the low predicted Ks in the top 0Ð5 m, as
these soils are very well structured and thus have a much
higher Ks than would be predicted from the texture alone
(McKenzie et al., 2004). This soil hydraulic classification
of the soils is needed to compare the derived S values in
this study to values in the NEH630 tables (NRCS, 2004a).

Limitations to the data

There are some limitations to the data, as most of the
detailed management records related to these studies are
difficult to interpret (see comments in Edwards, 1987).
In our study, rainfall (P) data was explicitly matched to
the runoff (Q) data. Unreasonable and clearly wrongly
recorded data were removed manually, such as Q data
with missing P data. In addition, the daily Q data was
manually matched to runoff generating storms in the P
data. For example, in some cases rainfall was recorded
on one day, while runoff was recorded on the next.

To account for possible differences in cover
(Descheemaeker et al., 2008), the data for the cultiva-
tion trials was split in growing (cropping) season and
non-growing (fallow) season data to represent different
land uses. Following Feyereisen et al. (2008), we based
our cut-off dates on the mean sowing and harvest dates
provided by Edwards (1987).

In the study, the fallow period in the wheat cropping
trials was typical of the prevailing regional management,
and consisted of wheat stubble management involving
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Table I. Average annual rainfall (1943–1975), average annual measured runoff from all plots, soil type, treatments, slope for the
experimental plots at the 6 NSW Soil Conservation Service locations (Edwards, 1987). Est. Ks is the saturated hydraulic conductivity
estimated from the average profile texture using pedotransfer functions (Minasny and McBratney, 2002). In the texture abbreviations,

SClL is sandy clay loam, mCl is medium clay, hCl is heavy clay, SL is sandy loam and fSCl is fine sandy clay

Location Average
annual

rainfall (mm)

Average annual
measured

runoff (mm)

Plots Slope
(%)

limiting
texture

within 0Ð5 m

Est. Ks (mm/hr) Estimated Soil
hydr. group

Cowra 659 17Ð3 Cultivation 7–8 SClL 21.7 C
SClL 21.7
SClL 21.7

Grazing 12–13 SClL 21.7 C

Gunnedah 646 19Ð5 Cultivation 8–9 mCl/hCl 2.5/0.9 D
Grazing 12 mCl 2.5 D

Inverell 783 50Ð4 Cultivation 9–12 hCl/mCl 2.5/0.9 C
MCl 2.5

Grazing 14–15 mCl 2.5 C

Wagga Wagga 569 18Ð5 Cultivation 4 mCl/fSCl 2.5/12.5 C
SL 21.24

Grazing 15 C

Wellington 644 17Ð4 Cultivation 4–4.5 lmCl 2.5 D
Grazing 11 lmCl 2.5 D

Scone 683 16Ð3 Grazing 10 HCl 0.9 D
HCl 0.9
HCl 0.9

30–36 HCl 0.9 D
HCl 0.9

occasional clipping or grazing of weeds and volunteer
grasses by sheep followed by a series of tillage operations
to prepare a seedbed for the next wheat crop (Edwards,
1987). Fallow management was not the same at all
locations and some sites were grazed regularly, while
others were not grazed at all. This very much depended
on the amount of volunteer weeds and grass that grew
during the fallow period. As a result of the opportunistic
use of grazing, the amount of cover during fallow years
is generally relatively low.

Deriving annual and monthly S values

Annual and monthly S values were determined by four
different methods based on earlier studies (i.e. Feyereisen
et al., 2008; King et al., 2008). These included the
lognormal, least squares, censored data and ‘Hawkins’
methods and are discussed in detail below.

In general, annual S values were calculated from P
and Q pairs using Equation (6). For the lognormal and
censored data method, the P and Q data from the replicate
plots in each treatment at a location were pooled. This
resulted in a distribution of S values for which one mean
S and standard deviation value by treatment and location
could be calculated.

For the least squares and ‘Hawkins’ method, the
replicate plots were not pooled as the underlying S
distribution cannot be recovered from the fitting method.
These methods therefore resulted in a maximum of 3 S
values per treatment at each location.

Using the lognormal method we also calculated
monthly CN to test if there were important seasonal
trends. These were calculated by splitting the treatment

datasets by month of the year and calculating average S
values for the monthly subsets for each treatment at each
location.

Lognormal method

The first method (the lognormal method) calculates S
from all the P and Q data using Equation (6), gener-
ating a vector of S values. Any S < P/0Ð2 (following
Equation (4a)) were deleted. The scatter of the resulting
S vector is assumed to be described by a lognormal dis-
tribution about the median (Hjelmfelt, 1991). The mean
S value is subsequently calculated as exp (mean(log(S))
and the back-transformed standard deviation of log(S) is
calculated using:

sdtrans�y� D
√

�exp�sd�log�y��2 � 1�

exp�2mean�log�y�� C sd�log�y��2
�7�

Least squares method

The second method is the least squares method (King
et al., 2008). We used nonlinear least squares regression
(using the function nls) in R (R Development Core Team,
2010) to fit Equation (4) to the P and Q pairs and derive S
as a parameter. In this case, the underlying S distribution
cannot be recovered, so the mean and standard deviation
of S by treatment is calculated from the replicated plots.

Data censoring method

The third method is a data-censoring method that uses
only the larger storms in the record. Various criteria have
been proposed for selecting the larger storms (Hawkins
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Figure 2. A: Normal, and B: complacent behaviour of the CN rainfall depth relationship as defined by (Hawkins 1993) for two example ordered
series at Cowra. In the ‘normal’ case the CN can be calculated as the asymptotic value as the rainfall depth goes to infinity. In the ‘complacent

behaviour’ case, a CN cannot be calculated

et al., 1985; Ponce and Hawkins, 1996). Following earlier
work (Hawkins et al., 1985; Feyereisen et al., 2008), we
used the partial-duration rainfall series for which P/S >
0Ð46 to represent the annual or monthly ‘flood’ series, or
censored dataset (Hawkins et al. 1985; Feyereisen et al.
2008). Subsequently, the lognormal method described
above is used to calculate the S distribution, mean, and
standard deviation for each treatment.

Asymptotic method

Finally, we applied the asymptotic method (Hawkins,
1993), which regards the CN as an asymptotic limit as
P approaches 1. In this method, the ‘Hawkins’ method,
CN calculated using Equations (4) and (5) are plotted
against the respective P values, and the asymptotic value
at high rainfalls is taken as the final CN (Figure 2a). The
analysis can be done on ordered or unordered data, and
we have plotted ordered data to increase the clarity of
the figure. The actual analysis used unordered data as
this should give more accurate results (Hawkins et al.,
2009). In some cases however, the CN does not reach an
asymptotic value but keeps declining, and the CN can-
not be calculated (Figure 2b). This is called complacent
behaviour (Hawkins, 1993) and is possibly due to insuffi-
cient data in the series. The opposite is violent behaviour,
in which the CN values suddenly increase after an initial
decline (Hawkins, 1993). We again used nonlinear least
squares (nls) in R (R Development Core Team, 2010)
to calculate the asymptotic S1 related to CN 1 values
by inserting Equation (5) into the suggested empirical

equations (Hawkins, 1993) to fit standard behaviour:

CN�P� D 25 400

S1 C 254
C

(
100 � 25 400

S1 C 254

)
exp��kP�

�8�
or violent behaviour depending on the data:

CN�P� D 25 400

S1 C 254
�1 � exp��kP�� �9�

In these equations, k is a fitting constant that describes
the slope of the log�CN� � log�P� relationship. The
nls function maximizes the logLikehood, therefore, sep-
aration between standard and violent behaviour was
based on which Equation ((8) or (9)) gave the high-
est logLikehood. Additionally, if the asymptotic S value
was greater than the maximum calculated S value
based on Equation (5) we assumed complacent behaviour
(Hawkins, 1993).

Comparison between methods and with NEH630

A more classical statistical comparison (such as using
an ANOVA) is not possible due to unequal S samples in
each method and the overall incomplete statistical design
of the runoff study.

We therefore used linear mixed models in Genstat 13
based on a REML (restricted maximum likelihood) analy-
sis to analyse the data by location, treatment, and method
of derivation (shown above), which corrects for uneven
variances and unbalanced designs. Given the complex-
ity of the standard errors in REML, graphical displays
are used to highlight statistical differences between the
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Table II. Comparable CN values from the NEH630 tables (NRCS, 2004) for the NSW soil conservation study treatments and soil
combinations selected for this study. (C D contoured, CR D Crop residue, SR D Straight row, HG D Hydrologic Group)

Land use Soil HG NEH630
CN choice

crop

NEH630
CN choice

fallow

Description

Cultivation treatment trials
2-year wheat rotation C 81 88 Small grains C good/fallow CR
2-year wheat rotation D 84 90 Small grains C good/fallow CR
2-year wheat rotation-stubble mulched C 80 88 Small grains C C CR/fallow CR
3-year wheat rotation C 81 86 Small grains C good/pasture poor
3-year wheat rotation D 84 89 Small grains C good/pasture poor
4-year wheat rotation C 81 79 Small grains C good/pasture fair
Annual wheat-stubble burned C 82 91 Small grains C poor/bare Soil
Annual wheat-stubble burned D 85 91 Small grains C poor/bare Soil
Annual wheat-stubble incorporated C 82 90 Small grains C poor/fallow
Annual wheat-stubble mulched D 84 88 Small grains C C CR poor/fallow CR
Corn-horizontal rows C 85 90 Row crops SR/fallow
Corn-vertical rows C 85 90 Row crops SR/fallow
Grain sorghum C 85 90 Row crops SR/fallow

Permanent pasture trials
Grazing oats C 81 Legumes SR good
Land retired C 74 Pasture good
Land retired D 80 Pasture good
Lucerne C 81 Legumes SR good
Lucerne D 85 Legumes SR good
Mixed pasture C 74 Pasture good
Native pasture C 74 Pasture good
Permanent pasture D 80 Pasture good
Phalaris/Lucerne pasture C 74 Pasture good
Rhodes/Lucerne pasture C 74 Pasture good
Sown pasture D 85 Legumes SR good
Sudan grass D 85 Legumes SR good
Volunteer pasture D 80 Pasture good

Grazing pressure trials
Heavy grazing C 86 Pasture poor
Heavy grazing D 89 Pasture poor
Medium grazing D 84 Pasture fair
Medium grazing-burned D 89 Pasture poor
Light grazing C 74 Pasture good
Light grazing D 80 Pasture good
No grazing D 78 Land protected from grazing

individual treatments and tables are used for statistical
summaries by location and method. Standard deviations
were approximated by multiplying the standard errors by
the square root of the number of observations.

To benchmark the derived S values in this study,
comparable S values were selected from ARC-II CN
for similar land uses in the NEH630 tables (Table II).
If there was no grazing or cropping, a good hydrologic
condition was assumed, otherwise the condition was
adjusted (Table II; NRCS, 2004b).

Antecedent moisture and rainfall intensity effects

Following earlier work (Dabney et al., 2011) a monthly
correction factor for the annual derived S, reflecting water
balance effects, was calculated based on average monthly
temperature and rainfall for each of the locations using
RUSLE2. The original approach was based on northern
hemisphere (US) climate data and we directly applied
the Northern Hemisphere correction (taking into account

the reversal in seasons) to see if the adjustment, reflect-
ing seasonal variation in antecedent moisture, explained
observed patterns of runoff and derived S values. Simi-
larly, an empirical correction factor for rainfall intensity,
based on the ratio of average monthly EI30 for the dif-
ferent locations (reported by Rosewell and Turner, 1992)
divided by average monthly rainfall depth, was applied
(Dabney et al., 2011).

RESULTS

Annual data

The results indicate a considerable variability in S val-
ues for the cultivation trials (Figure 3). The figure indi-
cates the mean and one standard deviation of the derived
S distribution, which for the least squares and Hawkins
method consists of only three values per treatment (one
for each rep). In Figure 3, S values based on similar treat-
ments from the NEH630 tables (Table II) have been used
on the x-axis as a reference. The least squares method of
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Figure 3. Calculated mean S values (mm) for the NSW data using the 4 different methods, plotted against S values (mm) derived from CN for similar
land uses suggested in the NEH630 tables (i.e. Table II), limited to the cultivation treatments. Error bars indicate one standard deviation (mm) and

the dashed line (–) indicates a 1 : 1 relationship with the NEH630 S values

analysing CN resulted in the lowest variability, while
the data censoring and Hawkins method resulted in the
highest variability in S values. Except for the lognormal
method, most mean S values are higher than for similar
treatments in the NEH 630 tables.

Cultivation trials

For the cropping season of the cultivation trials (wheat,
maize, and sorghum rotations), the derived S values are
lowest for the lognormal method. In contrast, the least
squares, data censoring and Hawkins methods result over-
all in much greater S values (Figure 3 and Table III).
Only a few of the Hawkins method fits indicated com-
placent behaviour and none indicated violent behaviour.
A majority of standard behaviour would be expected for
agricultural runoff data (Hawkins et al., 2009).

Based on REML means, the fallow season data indi-
cates statistically greater S values than the cropping
season using the lognormal method and data censoring
method (Table III), indicating lower runoff during this
period. For the least squares method and the Hawkins
method this is the reverse, with the cropping season data
resulting in greater S values.

REML mean S values for similar land uses clearly
vary between locations (Figure 4). For example, using
the lognormal method the mean S value for the 2-year
wheat rotation in Gunnedah is higher than the values
calculated for Wellington even though these locations
both have D soils. This might be due to differences in the
slopes, since at Wellington slopes were only 4–5%, while
the slopes at Gunnedah were 8–9%, thus suggesting a
negative relation between slope and runoff. Similarly, on

C soils, the S values for the 2- and 3-year wheat rotations
at Cowra are greater than those in Wagga Wagga, and
Wagga Wagga again has gentler slopes.

This can also be seen in the REML results summarized
for the cropping and fallow season by location (Table III).
This indicates that for the lognormal and least squares
methods, Cowra and Gunnedah gave consistently higher
S values (and thus, lower runoff) than Wagga and
Wellington. The data censoring method is based on fewer
P and Q pairs than the other three methods (Table IV),
while for the least squares and Hawkins methods the
underlying S distribution cannot be recovered and which
means there was a maximum of three S values per
treatment to calculate the standard deviations (Figure 4).

At all locations, the mean REML S values from the
lognormal and least squares method tended to increase
with increasing length of the wheat rotation (2 to 3 to
4-year wheat rotation) during both the cropping and the
fallow season indicating decreased runoff due to more
water storage (Figure 4).

Perennial pasture and grazing pressure trials

The S values from the perennial pasture and grazing
pressure trials are also quite variable (Table III and
Figure 5). The data censoring and Hawkins method result
in higher standard deviations than the log normal and
least squares methods. The lognormal method again has
S values closest to those derived from the NEH630 tables.

Statistical analysis indicated differences between dif-
ferent treatments for the perennial pasture trials, but
because the treatments were very inconsistent across the
locations this comparison is not shown, but rather the
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Table III. REML mean S and standard deviations (sd) for S values (in mm) calculated using the four methods for the NSW database
based on the replicate plots at each site for the cultivation, perennial pasture and grazing pressure trials. The results are summarized
by location and reported separately for the cropping and fallow season part of the year. NA means ‘cannot be calculated’. (For the

overall REML means, different letters on a row (a, b, c) indicate significant differences at the 5% level)

Location Lognormal Least squares Hawkins Data censoring

Cultivation trials: Cropping

S (mm) sd S (mm) sd S (mm) se S (mm) se

Cowra 82Ð5 96Ð6 216Ð5 54Ð3 404Ð8 36Ð9 311Ð1 94Ð1
Gunnedah 148Ð4 93Ð8 176Ð8 81Ð9 367Ð8 53Ð9 446Ð6 94Ð5
Inverell 115Ð5 74Ð2 142Ð2 77Ð8 327Ð8 39Ð3 151Ð4 332Ð7
Wagga Wagga 54Ð3 79Ð2 83Ð9 53Ð2 308Ð3 48Ð2 148Ð0 166Ð7
Wellington 68Ð3 94Ð1 37Ð5 94Ð6 NA NA 90Ð7 94Ð2
REML overall mean S 87Ð7a 93Ð5 156Ð4b 71Ð4 356Ð5c 275Ð9 163Ð0b 219Ð5

Cultivation trials: Fallow
Cowra 111Ð5 93Ð7 241Ð8 52Ð3 436Ð5 30Ð7 349Ð0 94Ð4
Gunnedah 142Ð6 93Ð6 217Ð6 81Ð9 283Ð1 54Ð0 248Ð6 95Ð0
Inverell 120Ð1 71Ð15 113Ð3 68Ð9 192Ð7 45Ð7 131Ð4 62Ð2
Wagga Wagga 85Ð1 83Ð3 110Ð0 53Ð2 322Ð7 39Ð3 375Ð4 76Ð5
Wellington 135Ð3 95Ð3 97Ð7 59Ð8 696Ð8 51Ð6 531Ð3 94Ð5
REML Overall mean S 108Ð8a 93Ð8 166Ð1b 65Ð1 386Ð5c 44Ð2 228Ð1c 217Ð8

Perennial pasture trials
Cowra 96Ð1 123Ð7 300Ð6 72Ð4 532Ð7 217Ð0 326Ð6 113Ð0
Gunnedah 164Ð0 74Ð3 325Ð3 55Ð9 406Ð5 58Ð0 379Ð6 73Ð3
Inverell 162Ð0 124Ð0 214Ð3 55Ð9 325Ð0 60Ð1 430Ð5 125Ð4
Wagga Wagga 117Ð4 126Ð3 245Ð1 72Ð4 471Ð6 72Ð4 508Ð9 125Ð2
Wellington 179Ð0 38Ð4 404Ð0 72Ð4 517Ð3 72Ð4 632Ð1 63Ð9
REML overall mean S 132Ð5a 132Ð8 285Ð7b 119Ð9 406Ð1c 80Ð2 391Ð9d 249Ð2

Grazing pressure trials
Cowra 177Ð1 125Ð0 485Ð9 88Ð5 636Ð7 108Ð4 455Ð9 125Ð2
Gunnedah 132Ð5 131Ð3 344Ð9 88Ð5 510Ð6 88Ð5 491Ð1 163Ð9
Inverell 183Ð3 125Ð5 211Ð8 88Ð5 313Ð7 97Ð0 382Ð8 125Ð1
Scone 145Ð5 125Ð3 322Ð6 36Ð2 505Ð0 39Ð0 422Ð3 125Ð4
Wagga Wagga 98Ð7 124Ð6 186Ð8 88Ð5 560Ð2 108Ð4 506Ð0 125Ð4
Wellington 206Ð0 124Ð8 887Ð2 88Ð5 794Ð6 88Ð5 531Ð4 125Ð1
REML overall mean S 145Ð9a 139Ð8 368Ð4b 108Ð9 532Ð9c 74Ð2 434Ð9d 285Ð4

overall variation by location is shown in Table III. In
general, the lognormal method again results in the low-
est S values compared to the least squares, Hawkins and
data censored methods (Table III), but there are no clear
trends across the locations.

The S values generally decrease with increasing graz-
ing pressure or burning, as a result of poorer hydro-
logic conditions, although this is not consistent across
all six locations (Figure 6). Increased grazing pressure is
expected to decrease the infiltration capacity of the soil
and increase runoff (Owens et al., 2003), but this trend is
not observed in the REML means (Figure 7). In fact, at
Inverell, Wellington and Scone, light grazing often results
in lower REML mean S values, and thus, higher runoff
than heavy grazing (Figure 7). The database management
notes indicate that the grazing trial was not well con-
trolled at Inverell, and that the validity of some of the
data at Wellington is in doubt (Edwards, 1987).

Monthly data

Using the lognormal method, monthly mean S values
are lower in winter and higher in summer as demonstrated
for the wheat treatments at Cowra (Figure 8). This

trend is clearer in the regular wheat treatments than in
the mulched treatment at Cowra. High to very high S
values are also observed in December under all wheat
treatments, corresponding to harvest time for the wheat
treatments.

One way to adjust the S values for soil moisture
and/or rainfall erosivity is using the empirical method
suggested by Dabney et al. (2011). The continuous line
in the graph indicates the soil moisture adjusted S values
based on the average annual S value for the wheat-based
treatments (Figure 3). This adjustment removes some of
the variation in the data (Figure 8 and Table V), but this
is mainly in the fallow periods of the wheat treatments.
More intense summer storms can sometimes result in
a lower S value (Dabney et al., 2011). However, the
RUSLE2 rainfall intensity adjustment had little effect
at Cowra (Figure 8, Table V) because of generally low-
intensity rainfall. The dashed line in Figure 8 indicates
the annual S value adjusted for the combined influence of
erosivity and soil moisture and is nearly the same as the
continuous line that reflects only soil moisture variation.

For the grazing and perennial pasture treatments at
Wagga Wagga a similar monthly soil moisture response to
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Figure 4. REML mean S values (mm) and standard deviations (mm) for the different cultivation treatments by cropping and fallow season and by
location. Error bars indicate 1 standard deviation (mm) based on the REML analysis

Table IV. Number of storms used for the derivation of S values in the different methods for the cultivation treatments. LN is
‘Lognormal’, LS is ‘Least Squares’ and H is ‘Hawkins’, the same number of storms was used for the analysis of these 3 methods

Location Treatment LN, LS and H methods Data censoring

Cropping

Cowra 2-year wheat 1076 2
2-year wheat stubble mulched 83 7
3-year wheat 523 22
4-year wheat 433 10

Gunnedah Annual wheat-stubble burned 107 6
Annual wheat-stubble mulched 91 3
2-year wheat 93 6

Inverell Annual wheat-stubble burned 189 17
Annual wheat-stubble incorporated 171 3
Corn-horizontal rows 136 25
Corn-vertical rows 175 88
Grain sorghum 284 141

Wagga Wagga 2-year wheat 555 51
3-year wheat 449 8

Wellington 2-year wheat 51 45
3-year wheat 45 3

Fallow
Cowra 2-year wheat 2279 45

2-year wheat stubble mulched 131 5
3-year wheat 1844 86
4-year wheat 936 46

Gunnedah Annual wheat-stubble burned 158 30
Annual wheat-stubble mulched 127 12
2-year wheat 473 89

Inverell Annual wheat-stubble burned 151 3
Annual wheat-stubble incorporated 173 3
Corn-horizontal rows 76 23
Corn-vertical rows 71 59
Grain sorghum 131 67

Wagga Wagga 2-year wheat 857 12
3-year wheat 1066 9

Wellington 2-year wheat 91 6
3-year wheat 232 9
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Figure 5. Calculated mean S values (mm) for the NSW data using the 4 different methods, plotted against S values (mm) derived from CN for
perennial pasture and grazing land uses suggested in the NEH630 tables (i.e. Table II). Error bars indicate one standard devation (mm) and the dashed
line (–) indicates a 1 : 1 relationship with the NEH630 S values. For the grazing trials a decrease in the hydrologic condition was used to adjust for

increased grazing pressure on the CN from the NEH630 tables (Table II)

Figure 6. Calculated mean S values (mm) for grazing treatments using the 4 different methods sorted by the intensity of the grazing treatment. Error
bars indicate one standard deviation (mm)

the wheat treatments in Cowra exists (continuous line in
Figure 9). However, in Wagga Wagga (which is located
approximately 200 km southwest of Cowra, Figure 1),
there is a greater effect of summer storm intensity on the
S values in January and February (dashed line). However,
the variation in the monthly CN appears to be better
matched by the soil moisture variation alone, indicating
that the empirical erosivity adjustment (Dabney et al.,
2011) is possibly less appropriate in Australia. The
overall adjustment is generally small and quite variable
for the treatments in Figures 8 and 9 (Table V). For

some, e.g. 3-year wheat, of the treatments the standard
deviation increased as a result of the moisture adjustment,
while for example, for lucerne at Wagga Wagga, the
standard deviation decreased for the moisture adjustment,
but increased again when the erosivity adjustment was
added.

DISCUSSION

The NSW SCS rainfall-runoff datasets contains consid-
erable variation in runoff responses across many years of
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Figure 7. REML mean S values (mm) and standard deviations (mm) for the different grazing treatments by location. Error bars indicate 1 standard
deviation based on the standard error of the REML analysis

Figure 8. Calculated mean monthly S values (mm) and standard deviations using the lognormal method for wheat treatments in Cowra. Monthly
adjusted annual mean S values for moisture and for moisture and erosivity are plotted as continuous and dashed lines, respectively

data, even for the same treatment. However, the variation
in mean S values in this study for the wheat treatments
is in line with other studies in Australia (Foerster and
Milne-Holme, 1995; Titmarsh et al., 1995).

Derivation methods

The difference in derived S values between the dif-
ferent methods also agrees with the study by Titmarsh
et al. (1995) and indicates that understanding the method
of estimation is crucial in the selection of an S value for
runoff estimates.

Rainfall runoff series are often characterized by
unequal variance. The lognormal method intends to cor-
rect for this and therefore emphasizes smaller storms
through the log transformation of the S values. As a
result the derived S values tend to be lower compared
to the other three methods which put more weight on
the larger storms (Titmarsh et al., 1995; Hawkins et al.,
2009). In addition, the high variability of the data cen-
soring method reflects the limited number of storms used
in this method (Table IV). This is a drawback of the data
censoring method and means that even the relatively long
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Table V. Standard deviations (sd) for the S distribution (in mm) calculated before and after adjustment for monthly variation due to
moisture and erosivity (Dabney et al., 2011) based on the lognormal method

Location Treatment Original
(Figure 3)

Adjusted for
moisture

Adjusted for
erosivity and

moisture
Cropping season

sd (mm) sd (mm) sd(mm)

Cowra 2-year wheat 98Ð5 98Ð7 98Ð7
Figure 8 2-year wheat stubble mulched 77Ð6 88Ð6 88Ð6

3-year wheat 108Ð2 113Ð7 113Ð7
4-year wheat 119Ð3 115Ð9 115Ð9

Fallow season
Cowra 2-year wheat 103Ð1 94Ð0 94Ð7
Figure 8 2-year wheat stubble mulched 153Ð7 143Ð0 145Ð3

3-year wheat 117Ð2 106Ð8 107Ð5
4-year wheat 163Ð1 147Ð1 148Ð5

Perennial pasture trials
Wagga Wagga Lucerne 119Ð5 107Ð9 110Ð3
Figure 9 Mixed pasture 104Ð2 91Ð5 93Ð4

Land retired 115Ð4 101Ð5 103Ð8

Figure 9. Calculated average monthly S values (mm) and standard deviations using the lognormal method for pasture cropping and grazed treatments
in Wagga Wagga. Monthly adjusted annual mean S values for moisture and moisture and erosivity are plotted as continuous and dashed lines,

respectively

data series in this study were insufficient to develop good
estimates.

If the S values are plotted against the rainfall amounts
of the respective events (Figure 10), it is clear that lower
rainfall events tend to have lower S values (relatively
more runoff and higher CN ) than higher rainfall events
because only high intensity storms generate runoff for
these low rainfall events. If an annual storm series (for
example based on a 2-year return value) is used in a data
censoring method rather than the P < 0Ð46S cut-off, the
variability in the S estimates would also be large. For
example the 2-year storm return value for Cowra for the
period under consideration is around 56 mm in Figure 10.

The sharp upper boundary of S in Figure 10 corre-
sponds to events with only a trace of runoff. This rep-
resents S ¾ 5 ð P (based on � D 0Ð2S ¾ P). The fact
that this boundary occurs even at much larger rainfall
events means that for a significant fraction of larger rain
events, there was relatively little runoff. As a result, the
variability in S values increases with increasing storm
size because for larger (daily and multi day) storm sizes
there is more possible variation in runoff responses due
to greater variation in rainfall intensities. This can also
be seen in the variability in the data censoring method.

The analysis of S values in this study was based on
P and Q pairs where Q > 0. Excluding the rainfall data
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Figure 10. Calculated S values using the lognormal method for 2-year and longer wheat treatments plotted against event rainfall amounts across all
locations

where Q D 0 can lead to lower overall S values, as this
data would increase the number of S ¾ 5 ð P values in
the distribution. As far as we can determine, this effect
could possibly influence the lognormal method. As a
result, predicted runoff using the derived CN in this study
could over-estimate true runoff, but some preliminary
analysis suggests this effect is minor. How including the
zero runoff data affects estimates of both S and Ia could
be an interesting avenue for further research.

Depending on the runoff estimate that is needed, a
different method might need to be used. The lognormal
method with the emphasis on the smaller events is only
useful for plot scale estimates for a specific location.
Many of the smaller runoff events can disappear at
larger spatial scales, particular in semi-arid conditions,
due to transmission losses (e.g. Simanton et al., 1996).
This means that for larger spatial scale applications the
least squares or Hawkins method is more applicable. In
contrast, for peak runoff estimates related to hydrological
design the data censoring method is most appropriate.

If exact estimates of runoff for a specific location
are needed in a hydrological model, calibration of CN
on local data is the best solution (i.e. Hawkins et al.,
2009; Kim et al., 2010). However, the results from this
study can give some guidance on the expected values
for such calibrations and possible temporal variations
which is important for dynamic modelling. The overall
distribution in the S values can also be useful for larger

regional studies, for example, using SWAT (Arnold and
Fohrer, 2005), that need to include stochastic variation
in the runoff generating processes across the landscape
with variable land use. In particular, in such models, the
relationship between P and S is crucial because models
include all rainfall storms rather than design storms with
a specific return interval. Given that all methods develop
a direct relationship between S and P, this can be used to
further adjust the curve number values in such dynamic
hydrological models.

Comparison with NEH630

Several studies have earlier indicated that there was
little correspondence between the CN listed in the
NEH630 tables and derived CN using different methods
(Hawkins et al., 2009), possibly because of inaccuracies
in the original determination of CN . More specifically,
little correlation was found between NEH630 values
and CN based on Queensland catchment data (Titmarsh
et al., 1995). One reason which makes it unlikely that
the NEH630 values are comparable to the derived S
values in this study is that many of the treatments do not
match the listed NEH630 land uses exactly (Table II).
For example, fallow treatments in NSW are much more
variable than in the US and can stretch over several years.
Grazing by sheep is often used to control grass and weed
growth during such long fallow periods. Additionally,
due to the Australian climate, locations in NSW would be
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Table VI. Curve numbers for NSW land use on ‘C’ and ‘D’ soil hydrologic groups (HG) for ARC I–ARC III conditions for fallow
and cropping seasons based on the least squares method

Land use Soil HG ARC I ARC II ARC III ARC I ARC II ARC III

Cropping season Fallow season

2-year wheat rotation C 46 72 89 46 59 71
2-year wheat rotation D 32 72 94 45 64 80
2-year wheat rotation-stubble mulched C 51 77 92 32 48 64
3-year wheat rotation C 34 65 87 34 59 80
3-year wheat rotation D 75 87 93 61 78 88
4-year wheat rotation C 28 44 61 42 50 58
Annual wheat-stubble burned C 46 51 56 56 60 63
Annual wheat-stubble burned D 48 63 75 44 53 62
Annual wheat-stubble incorporated C 42 54 66 58 59 60
Annual wheat-stubble mulched D 52 55 57 45 47 50
Corn-horizontal rows C 68 68 69 65 69 72
Corn-vertical rows C 68 75 80 68 76 83
Grain sorghum C 69 71 72 65 71 76

Perennial pasture trials
Grazing oats C 45 60 74
Land retired C 34 47 61
Land retired D 9 51 91
Lucerne C 46 54 63
Mixed pasture C 36 51 66
Native pasture C 50 57 64
Permanent pasture D 21 26 31
Phalaris/Lucerne pasture C 15 41 74
Rhodes/Lucerne pasture C 40 46 53
Sown pasture C 50 55 60
Sown pasture D 54 55 56
Sudan grass D 40 45 51
Volunteer pasture D 49 55 60

Grazing pressure trials
Heavy grazing C 28 37 46
Heavy grazing D 30 54 77
Medium grazing D 13 47 83
Medium grazing-burned D 21 50 80
Light grazing C 14 43 77
Light grazing D 22 45 70
No grazing D 13 41 75

expected to have a much drier average antecedent runoff
condition (ARC) and lower average rainfall intensity than
the climate in the US on which the values for similar
treatments in the tables were calibrated.

Sources of variation in the derived S values

Besides reporting S values and thus related CN for
specific Australian treatments and for different locations,
this paper aimed to explain some of the variation in
the derived S values to better understand the variation
in hydrological responses from agricultural land. As
demonstrated, part of the annual variation is likely due
to seasonal variation in available soil moisture content.
Higher rainfall and lower evapotranspiration in winter
(due to lower radiation) would cause higher seasonal soil
moisture and higher runoff. Initial moisture is therefore
a key variable that causes variations in runoff response,
and the CN method has long recognized this through
adjustment (ARC I–ARC III) for antecedent runoff
conditions. If the 5 and 95% confidence intervals of the S
distributions are adopted as ARC I and III conditions, and

using the lognormal method (Hjelmfelt, 1991) then the
range of possible CN can be developed for different NSW
treatments based on this dataset (Table VI). This table
indicates quite reasonable variation in treatments, soil
hydrologic groups and ARC, even though the variation
due to ARC is high. Adjustments for monthly variation in
moisture content and rainfall erosivity (Figures 8 and 9)
remove some, but not all, of the variation in the lognormal
method (and by extension, in the other methods) which
means inherent variation remains a key feature of the CN
method.

Given the overall variability, the range of locations
and length of the experiments in the database, there
are several other reasons that explain variation in S
values such as effects of differences in slope on the
runoff, non-stationarity in the runoff response due to
changes in management, or recording errors (Hawkins
et al., 2009). Besides increased interception due to crop
canopy closure, an increase in S values in the later
part of the crop growing season (December) can be
related to increasing soil cover (Owens et al., 2003;
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Descheemaeker et al., 2008). This can also explain the
higher variability in monthly S values in the stubble
mulched treatment (Figure 8), being caused by variations
in soil cover from season to season. Finally, the increase
in monthly S values in December for the cropping
season of the cultivation treatments (Figure 8) can be
due to increased transpiration due to higher temperatures
and increased biomass in that period of the year, thus
lowering the soil moisture store steeply (Huang et al.,
2007).

Despite all the variation, some clear differences
between the treatments can be observed (Figures 4 and 7)
and the table of resulting CN (Table VI) indicates log-
ical trends. However, some interesting future research
could concentrate on the actual treatments in the CN table
(Table VI). One could argue that there is little difference
between the different length of wheat rotations (1 year,
2 year, etc.) and that thus the length of the fallow period
has only a minor influence on the soil infiltration and
runoff. In contrast, the development stage of the crop
would be a more important classification than the crop
type or rotation length in the different cropping treat-
ments. In the end, the CN aim to represent broad land use
soil class combinations, which can be expected to include
considerable internal random variation due to variation
in storm intensities and ARC (Hjelmfelt, 1991). This is
probably more true in semi-arid environments such as
Australia (Pilgrim et al., 1988).

In this study, we did not attempt to validate the derived
CN. Given the overall variation in the treatments in the
dataset, it was difficult to split the data into a validation
and calibration set. Furthermore, as the high variability
in the derived S values indicates, such a validation would
be unlikely to indicate good performance. Given the
simplicity of the 1 parameter rainfall runoff model that
the CN method represents, this is not surprising. We
therefore believe that the stochastic variation indicated
by the results in this paper is of more use to a hydrologist
than a validation attempt.

CONCLUSIONS

Values of S for CN calculations were derived for a wide
range of specific Australian land use soil combinations
extending the available estimates for CN specifically for
Australian conditions. Depending on the method used to
calculate S, considerable variation in S related to one land
use soil combination was found.

Part of the variation in S can be explained by dif-
ferences in seasonal antecedent moisture content and
increases in cover from a growing crop. However, there
was little evidence that rainfall intensity impacted the S
estimates.

Rainfall depth introduces further variation in S and this
should also be taken into account in dynamic hydrological
models.

Different derivation methods result in differences in S,
and changes the variance and this should be considered

when deriving CN. The lognormal method emphasizes
smaller rainfall events, which only result in runoff under
high rainfall intensities. This is unlikely to be useful
for estimation of runoff at larger spatial scales and in
catchment models.

The derived distributions of S values for agricultural
treatments in NSW are a useful addition to the Australian
hydrologist’s toolbox and put in perspective the expected
variation in runoff responses from agricultural land uses.
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